Assessing the Supplier Role of Selected Fresh Produce Value Chains in the United States

Houtian Ge
Department of Agricultural Economics, Sociology and Education
The Northeast Regional Center for Rural Development
Penn State University
hug19@psu.edu

Patrick Canning
Economic Research Service
U.S. Department of Agriculture
pcanning@ers.usda.gov

Stephan J. Goetz
Department of Agricultural Economics, Sociology and Education
The Northeast Regional Center for Rural Development
Penn State University
sgoetz@psu.edu

Agnes Perez
Economic Research Service
U.S. Department of Agriculture
acperez@ers.usda.gov

Abstract: This article identifies through simulation analysis the optimal locations of regional fresh produce assembly hubs in the U.S. In contrast to much of the literature, we introduce economies of scale into the model and annual production statistics are disaggregated into four seasonal segments to more accurately account for the highly variable geographic disposition of annual fresh produce production. The hub optimization problem is formulated as a mixed integer linear programming model with the objective of minimizing total costs associated with fresh produce assembly and hub operations. Our results suggest that scale economies have a significant effect on the optimal solutions of hub numbers, locations and sizes. This article provides a replicable empirical framework to conduct impact and cost assessments for regional and local food systems.

Key words: Operations research, facility location, optimization, simulation, fresh produce

The views expressed here are those of the authors, and may not be attributed to the Economic Research Service, the U.S. Department of Agriculture, or Penn State University. Partial funding under USDA NIFA grant no. 2011-68004-30057 and under a cooperative agreement with ERS is gratefully acknowledged.
Introduction

Food insecurity is a serious challenge for millions of Americans (Coleman-Jensen, Nord and Singh 2013), and interest among consumers and private and public decision makers in the sustainability of food supply chains is increasing as domestic and worldwide population grows (Nicholson, Gómez and Gao 2011). Consequently, the structure and optimization of key agricultural supply chains is of growing importance (King et al. 2010).

The U.S. Department of Agriculture (USDA) administers or is examining a variety of policies and programs to (i) accommodate the growing demand for food that accompanies population growth, (ii) enhance food access and affordability for low-income communities, and (iii) encourage sustainable growth of the food system. To accomplish these goals while also benefiting food system participants, USDA seeks to strengthen regional and local food systems. Developing regional food hubs is an important component of this strategy. In 2009, the USDA launched the “Know Your Farmer, Know Your Food” initiative to strengthen the connection between farmers and consumers while supporting local and regional food systems.

Demand for locally grown food has increased dramatically in the last decade (Jablonski, et al. 2011). As policymakers, researchers, and practitioners seek new opportunities to support food security and rural development, interest in regional and local food systems continues to grow (Boys and Hughes 2013; Brown and Miller 2008; Clancy 2010; King et al. 2010; Martinez et al. 2010; O’Hara and Pirog 2013). The role of small- and medium-scale producers in developing local and regional food systems has attracted renewed attention especially, as their importance in supplying food markets has gained recognition (Darby et al. 2008; Low and Vogel 2011). Despite the purported potential of local food systems to increase farm sales, particularly for small and mid-scale producers, and support rural economic development, producers face a lack of distribution infrastructure and services and limited marketing capacity (Brown et al., 2014). Many farmers and ranchers – especially smaller operations – are challenged by the lack of distribution and processing infrastructure of appropriate scale that would give them wider access to retail, institutional, and commercial foodservice markets (Martinez et al. 2010). These small- and medium-scale producers are too small to compete effectively in traditional wholesale supply chains and often lack the volume and consistent supply needed to attract retail and foodservice
customers. Furthermore, due to limited staff or lack of experience, they are not always able to devote the attention necessary to develop successful business relationships and linkages with key wholesale buyers or have the resources to develop effective marketing strategies.

Regional food hubs are seen as an effective way to overcome these infrastructural and market barriers and provide growers with cost-effective product consolidation and distribution (Low et al. 2015; Tropp 2008). USDA’s Agricultural Marketing Service (AMS) defines food hubs as “a centrally located facility with a business management structure facilitating the aggregation, storage, processing, distribution, and/or marketing of locally/regionally produced food products.” (www.ams.usda.gov/AMSv1.0/FoodHubs). For smaller and mid-sized producers who wish to scale up their operations or diversify their market channels, food hubs offer a combination of services that allows them to take advantage of the growing demand for locally and regionally grown food in large volume markets that would be difficult or impossible to access on their own. From this point of view, food hubs create new marketing opportunities for farmers and ranchers to expand their markets, providing a critical supply chain link for rural communities and farmers to reach consumers interested in purchasing local products.

This paper examines the roles and potential market impacts of regional food hub development through consideration of assembly (as opposed to distribution) hub locations in selected fresh produce value chains in the United States. Fresh produce suppliers -- comprising shippers, importers, wholesalers, distributors, and brokers -- provide a range of marketing services for domestic and international growers supplying fresh produce to U.S. markets, and to their retail and foodservice customers serving the U.S. market (Cook, 2011). The annual U.S. retail value of fresh produce reflects costs distributed roughly equally among the farm value, the value of supplier services, and the value of services from retailing and foodservice establishments (Canning 2011). Whereas research on and analysis of the production and retailing segments of fresh produce value chains is extensive and produce assembler studies have been limited and narrow in scope, leaving a gap in our understanding of these important value chains.

To narrow this gap, this research characterizes and models transportation and supplier logistic (TSL) services in selected U.S. fresh produce markets, focusing on commodities that are highly perishable (i.e., excluding commodities that can keep fresh in long term cold storage such as
apples and cabbage). We solve for both the scale and locations of these TSL hubs that minimize total costs of assembling and distributing U.S. production to final markets. Outputs from this model include assembler cost functions that characterize scale economies across fresh produce TSL hubs, and shipping cost functions that characterize the impedance-based transportation costs for shipments between production nodes and supplier hubs.

Literature Review

Hub-and-spoke networks have become an important field of discrete location research (Camargo and Miranda 2012). Direct transportation of flows between pairs of origin-destination nodes is usually extremely costly. As an alternative, flows from different origins but addressed to the same destination can be consolidated at transshipment nodes, known as hubs, prior to be routed, sometimes via other hubs, towards their destinations. Hubs are then responsible for flow aggregation and redistribution. Hub location modeling is common in air transportation, telecommunication, ground freight transportation and other transportation scenarios (Aros-Vera, Marianov and Mitchel 2013; Horner and O’Kelly 2001; Dantrakul, Likasiri and Pongvuthithum 2014; Jouzdani, Sadjadi and Fathian 2013). These applications of hub location modeling in the literature have shed light on network optimization and helped pave the way for a more complete methodological framework to study hub network design.

In the past decade, growing attention has also been given to the need for and importance of conducting more empirical studies related to the supply chain for local food products (Abatekassa and Peterson 2011). In this area, the regional food hub concept has sparked strong interest from a wide array of food system planners, researchers and policy makers. There exists a substantial discussion in the literature regarding the role of regional and local food hubs in improving market access for producers along with their potential for expanding the availability of fresh food in communities, including underserved communities (Alumur and Kara 2008; Campbel, Ernst and Krishnnaoorthy 2002; Feenstra et al. 2011; Jablonski, Schmit and Kay 2015; O’Hara and Pirog 2013). These data driven models were built with the goal to look for patterns and practices that are consistent enough to be used as viable regional distribution solutions for local food marketing.
Two recent studies by Etemadnia et al. (2013, 2015) formulate hub location problems as mathematical programming models that minimize total network costs which include costs of transporting goods and locating facilities. Computational experiments were conducted to identify the optimal hub numbers and locations in food supply chain systems. While the method and analysis contribute to the analysis of optimization of local food systems, these studies impose strong simplifications on the operational level which are directly related to the solution of facility location. First, they use annual production data and neglect seasonal differentials in production which can affect the hub operational strategies- and generate heterogeneous costs across marketing seasons. To effectively formulate the system patterns and structure, annual network costs should be derived from the sum of components of seasonal costs. Second, they assumed homogeneous operation costs across hubs with varying handling capacities. As an economic phenomenon common in fresh supply chain system, economic scale effects play an essential role in shaping the optimal network configuration. The lack of scale effects in the models means generated solutions are likely to deviate from representative experimental conditions that ought to be used to reach an optimum. This study relaxes these assumptions and develops more realistic models that fit the supply chain context.

The Effects of Scale Economies

Economies of scale play a fundamental role in network design (Camargo, Miranda and Luna, 2009; Horner and O’Kelly, 2001). To understand the actual operating cost patterns and identify empirical evidence of scale effects inherent in hub operations, we collect and analyze data on the scope and scale of food hub operations. Based on 2007 Economic Census data regarding county and state level fresh produce sale values and corresponding operational cost, we compiled data for geotype=02 (state or equivalent) and 03 (county) and obtained 108 observations. Four hierarchy quartiles are defined based on sale values of hubs: 0.05-0.20 billion dollars, 0.2-0.5 billion, 0.5-1 billion and 1 billion above. For each quartile, the relationship between the hub operation cost (independent variable (X)) and the sale value of the hub (dependent variable) is regressed (Table 1).
Table 1. Regression Results for Scale Effect of Economies (Fresh Produce)

<table>
<thead>
<tr>
<th>Quartiles</th>
<th>Variables</th>
<th>Coefficients</th>
<th>t Stat</th>
<th>P-value</th>
<th>F</th>
<th>R Square</th>
<th>obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1</td>
<td>Intercept</td>
<td>1068.4</td>
<td>0.235</td>
<td>0.816</td>
<td>48.35</td>
<td>0.659</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>X Variable</td>
<td>0.217**</td>
<td>6.954</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartile 2</td>
<td>Intercept</td>
<td>2424.3</td>
<td>0.176</td>
<td>0.861</td>
<td>22.36</td>
<td>0.411</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>X Variable</td>
<td>0.206**</td>
<td>4.729</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartile 3</td>
<td>Intercept</td>
<td>11272.4</td>
<td>0.347</td>
<td>0.732</td>
<td>17.33</td>
<td>0.419</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>X Variable</td>
<td>0.180**</td>
<td>4.163</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartile 4</td>
<td>Intercept</td>
<td>25760.8</td>
<td>1.041</td>
<td>0.311</td>
<td>1191.3</td>
<td>0.984</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>X Variable</td>
<td>0.176**</td>
<td>34.52</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ** significant at 5% level

The operational costs are broken into fixed and variable (or marginal) costs. Fixed costs include hub establishment and maintenance, machinery, equipment and so on that are independent of volume of products handled. They remain constant in a quartile. Variable costs include wages, utilities and other sources of costs used in handling products. In these regressions, the fixed costs are the intercept terms and the variable costs are the coefficients of variables. Regression results show fixed costs (intercept) increase with the scale of hub, and on the contrary, the marginal costs decrease with the scale of hub, i.e., the more products handled, the less the marginal cost for one unit increase in the volume handled. The operational cost for per dollar sale value handled is $0.217, $0.206, $0.180 and $0.176 from lower quartile 1 (with smaller sale value) to upper quartile 4 (with larger sale value). In this manner, handling cost of a shipper hub is based on the amount of product flow carried by the hub and is endogenously responsive to flow by rewarding the shipper for greater volumes shipped. Under cost minimization principles, the number and scale of facilities to be established typically becomes an endogenous decision. Based on these regression results, this study embodies the economic scale effect into the models and demonstrates how it leads to differing spatial network structures.
The Problem Statement and Methodology

The objective of this study is to identify and profile supplier roles of fresh produce value chains and collect and analyze data on the scope and scale of supplier operations in order to more clearly understand their potential role and impact in the U.S. food system. To do this, a model is built to identify the optimal number, scale and locations for TSL hubs for fresh produce sourced from growers located in multiple U. S. counties. We formulate the hub optimization problem as a mixed integer linear programming model with the objective of minimizing total costs associated with product assembly and hub operations. The optimization problem is subject to constraints to ensure that total production by region and average per unit supplier and shipping costs meet observed statistics. The following notations are introduced for the models.

$I=\{1,2,3,4\}$ denotes four marketing seasons in a year;
$F=\{1,2,3,…,f\}$ denotes a set of production locations;
$S=\{1,2,3,…,s\}$ denotes a set of hub candidate locations;
$c \in C$ denotes capacity level of assembly hubs; each capacity level has an interval span;
$x_{i,f,s}$ denotes quantity shipped from production location f to hub location f in marketing season i;
$p_{i,f}$ denotes production at production location f in marketing season i;
$z_{c,s}$ denotes an integer variable $=1$ if location s is a hub with capacity c, and 0 otherwise;
$d_{f,s}$ denotes distance between production location f to hub location s (impedance miles);
t denotes fixed transportation cost ($\$ per thousand pound impedance mile);
DT denotes distance threshold between production locations and hub locations (impedance miles);
$U_{c,s}^1$ denotes maximum capacity of c level hub in location s;
$V_{c,s}^1$ denotes minimum capacity of c level hub in location s;
$U_{c,s}^2$ denotes maximum quantity of products handled at c level hub in location s during all marketing seasons;
$V_{c,s}^2$ denotes minimum quantity of products handled at c level hub in location s during all marketing seasons;

TC_s denotes total annual hub s operation costs, and

$TC = \sum_s TC_s$ denotes annual hub operation costs nationwide.

A TSL hub facility of capacity c is costly to build and maintain. The annual opportunity costs of equity financing, interest costs of debt financing, and replacement costs of physical and economic depreciation are born by owners regardless of TSL services produced; denote these as fixed setup and maintenance costs, h_c^0. In addition, for each unit of produce handled up to the capacity to which the hub facility is built, a per unit handling cost is incurred; denote these as marginal costs, h_c^1. For any region s where a TSL produce hub facility of capacity c is located, total handling charges from assembling commodities for distribution are:

1) $TC_s = h_c^0 + h_c^1 \cdot Q_s$

where $Q_s = \sum_{i\in I} \sum_{f\in F} x_{i,f,s}$, and $x_{i,f,s}$ denotes the quantity of produce grown in production node location f and shipped to hub s in marketing season i. Produce hub investors are assumed to choose from a finite number, C, of possible hub capacities to build a TSL produce hub. Each hub size has a maximum capacity constraint, h_c^{max}, which determines the maximum quantity of production that can be transported to the hub across four marketing seasons.

Produce assembly at hub location s involves shipments from surrounding production and import regions (or nodes) via a domestic freight network that connects all nodes and hubs. All shipments are assumed to be transferred by land using trucks, and the transportation cost is a function of travel distance (impedance miles). This cost may be paid by the grower/importer or the supplier, and is reflected in the fob supplier price1,

2) $\sum_{i\in I} \sum_{f\in F} \sum_{s\in S} \{t \cdot d_{f,s} \cdot x_{i,f,s}\}$,

where $t \cdot d_{f,s}$ is the unit transportation cost for shipments between growing/import node f and hub location s.

1 Free-on-board (fob) supplier price is the unit cost that buyers of fresh produce from hub o are charged assuming the buyer pays (or is charged separately) all freight costs to ship their purchase to the buyers location.
Transportation costs between node pairs are usually defined to be proportional to the distance between nodes. However, transportation costs are also subject to constraints, e.g., road condition, speed reduced on evening commute, traffic jams and congestion which influence travel time and speed (Novaco, Stokols and Milanesi 1990). This involves the concept of impedance. To evaluate the transportation costs between production nodes and hubs, each link in the network is assigned an impedance value other than actual mileage. Impedance represents a measure of the amount of resistance, or cost, required to traverse a path in a network, or to move from one element in the network to another. High impedance values indicate more resistance to movement. For this study, we use version 3 of the national multi-modal impedance network database (http://cta.ornl.gov/transnet/SkimTree.htm).

For a national fresh produce transportation and supplier logistics system, optimal TSL hub scales and locations are determined by minimizing total costs of TSL hub operations plus shipping costs of moving all domestically grown fresh produce to a TSL hub. The objective function and system constraints of a model to solve this problem are given in equations 3 to 9.

Minimize

3) \[TC = \sum_{c \in C} \sum_{s \in S} \left\{ (h_{c,s}^0 + h_{c,s}^1 \cdot Q_s) \cdot Z_{c,s} \right\} + \sum_{i \in I} \sum_{f \in F} \sum_{s \in S} \left\{ x_{i,f,s} \cdot d_{f,s} \cdot t \right\} \]

Subject to:

4) \[\sum_{s \in S} x_{i,f,s} = p_{i,f} \quad \forall \; i, f \]

5) \[Z_{c,s} \in \{1,0\} \quad \forall \; c, s \]

6) \[\sum_{c \in C} Z_{c,s} \leq 1 \quad \forall \; s \]

7) \[\sum_{f \in F} x_{i,f,s} \leq \sum_{c} Z_{c,s} U_{c,s}^1 \quad \forall \; i, s \]

8) \[\sum_{f \in F} x_{i,f,s} \geq \sum_{c} Z_{c,s} V_{c,s}^1 \quad \forall \; i, c, s \]

9) \[\sum_{i \in I} \sum_{f \in F} x_{i,f,s} \leq Z_{c,s} U_{c,s}^2 \quad \forall \; c, s \]

10) \[\sum_{i \in I} \sum_{f \in F} x_{i,f,s} \geq Z_{c,s} V_{c,s}^2 \quad \forall \; c, s \]

11) \[x_{i,f,s} \geq 0 \quad \forall \; i, f, s \]
The objective function (3) minimizes total cost. Equation (4) ensures that in each marketing season the total quantity transported from production region \(f \) to all hubs \(S \) are equal to total quantity produced in region \(f \) in the season. That is, all products must be assembled into hubs across marketing seasons. Equation (5) provides the binary condition—build/do not build, while equation (6) guarantees that the total number of hubs built in hub location \(s \) is not more than 1. Equations (7) and (8) ensure that products will not be transported to any hub location \(s \) unless a hub is installed and there is sufficient capacity to handle all products transported to hub \(s \) in marketing season \(i \). Equations (9) and (10) define the quantity handling threshold for a hub to enjoy a certain level of scale effect. Equation (11) ensures that shipments only flow from farms to hubs and not vice versa.

Data

The National Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture (USDA) reports State level annual production statistics for 21 different fresh market vegetable crops across 37 States (USDA/NASS, 2009). The 2007 statistics are allocated to counties in these States based on harvested county acreage, using table 30 in the 2007 Census of Agriculture (USDA/NASS, 2009b). For States not covered in the annual NASS reports but that are covered in the Census, harvested acreage data from the Census are multiplied by yield per acre data in nearby States to impute production. To overcome data suppressions in the Census data, a constrained maximum likelihood mathematical programming model was used. The model minimizes adjustments to the variance weighted initial estimates of suppressed data to align these estimates with the adding up requirements of the hierarchical data in table 30. This hierarchy includes requirements that the sum of harvested crop acreage across all commodities equal the published county-wide total harvested vegetable acreage, and that the sum of harvested acreage for specific crops across all counties in a State equal the published statewide total for each crop. By simultaneously solving a State/County model and a National/State model for the same commodities, the model produces maximum likelihood estimates of all suppressed county harvested acreage statistics. The same approach was used for estimates of fresh market fruit production in U.S. counties, based on annual production statistics of 34 different fresh market fruit and berry crops across 43 States (U.S. Department of Agriculture, 2009c, 2009d), and tables
31 and 32 of the Census (USDA/NASS, 2009b). Combined production for the subset of these 55 crops produced in each county are converted to a common unit (1,000 lbs) and summed to a single production statistic per county. County-to-county shipping costs are based on Oak Ridge National Laboratory multi-modal impedance network data product, and average shipping costs statistics published by AMS. Empirical estimates of fixed and per unit marginal handling costs for each capacity choice are obtained from regression analysis of data in the Economic Census of Wholesale Trade.

Based on 2007 USDA/NASS data, 2,624 counties in the contiguous U.S. grow vegetable or fruit farms. Annual production statistics are disaggregated into seasonal marketing segments to more accurately account for highly variable geographic disposition of annual fresh produce production. Monthly fresh produce import data by county of unloading are compiled from Census Bureau sources. 105 counties in 38 states import 68 categories of fresh produce from areas beyond the U.S. Figure 1 shows the continental U.S. fresh produce production map across 4 seasons. Production and imports are as expected unevenly distributed across seasons and the main production areas are on the West Coast. Among them, California has the highest production and import levels, followed by Florida and Washington. The Northeast also enjoys high production and import levels while production and imports in some Rocky Mountain States and Plain States are low.
Experimental Setting, Results and Analysis

The models assume varying costs for establishing and maintaining hubs with different capacities and different unit costs for handling products in those hubs. The capacity of a hub is the maximum quantity that can be handled in any one of the four marketing seasons. Hubs with larger capacity can handle a larger quantity of products than hubs with smaller capacity during marketing seasons. It is assumed that a hub must handle a minimal level of product quantity to achieve a certain level of scale effect. Four different thresholds for quantity of products handled at hubs during four marketing seasons are defined and named as Quartiles 1-4 (unit: thousand pounds):

- Quartile 1: 100,000 and below
- Quartile 2: 100,001-500,000
- Quartile 3: 500,001-2,000,000
- Quartile 4: 2,000,000 and above

Regression results reported in table 1 are incorporated into these model simulations, where they inform alternative hypothetical hub cost parameters. Thus, annually attributed hub fixed costs

Figure 1: Distribution of Fresh Produce Production in the U.S. across Seasons

Note: Season 1 is January – March, Season 2 is April – June, etc.

Source: Authors. In blank counties, no survey data are reported.
(h^0) for handling quantity defined in four quartiles are $80,000, $120,000, $240,000 and $400,000 respectively in models allowing for varying scales of hubs across quartiles. Following the regression pattern of operating cost in the previous section, hubs handling a higher quantity of products enjoy lower variable handling costs. The marginal handling costs (h^1) used in this model are calibrated as a ratio of 10% of their counterparts in regressions (table 1). Our goal is to test the sensitivity of the model solution to the scale effect and we are aware that the magnitude of the marginal handling cost significantly influences the model solutions, and that these costs will be calibrated in a future iteration of this research.

In order to identify the effect of scale economies on the optimal solutions of the problem, we design five experimental models. We assume different values of the marginal handling costs for each of five models: the marginal cost margins (marginal cost difference between two adjacent quartiles) are $0, $0.5, $1, $1.5, $2 for models 1-5 respectively. The fixed costs and marginal costs for hubs in each quartile in each model are list in Table 2:

Table 2. Fixed Costs and Marginal Costs for Hubs

<table>
<thead>
<tr>
<th>Quartiles</th>
<th>Fixed Costs (US$) Models 1-5</th>
<th>Marginal Costs (US$/1,000 lbs handled by hub) Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80,000</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>120,000</td>
<td>22</td>
<td>21.5</td>
<td>21</td>
<td>20.5</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>240,000</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>400,000</td>
<td>22</td>
<td>20.5</td>
<td>19</td>
<td>17.5</td>
<td>16</td>
</tr>
</tbody>
</table>

Using the model reported in equations (3) to (9) and the set of parameter values and data, model simulations for models 1 to 5 allows us to generate data for the hub location problem. The optimization problem is compiled in GAMS and solved using CPLEX. All computational executions were performed on a High Performance Computing System. Next we present the results of computational experiments and conduct our analysis.

The hub numbers at each quartile across models change significantly due to the scale effect. As shown in Table 2, the hub numbers in quartile 1 are negatively related to the marginal cost
margin and, on the contrary, the hub numbers in Quartiles 3 and 4 are positively related to the marginal cost margin. The hub numbers in Quartile 2 do not change consistently across models. The locations and scales (capacity) of these hubs in each model are shown in Figures 1-5. The hub capacity is presented by the maximum quantity of product handled across the four marketing seasons.

Table 2. The Number of hubs at Each Quartile across Models

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1</td>
<td>367</td>
<td>254</td>
<td>190</td>
<td>142</td>
<td>111</td>
</tr>
<tr>
<td>Quartile 2</td>
<td>139</td>
<td>130</td>
<td>148</td>
<td>145</td>
<td>132</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>45</td>
<td>51</td>
<td>51</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>12</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>563</td>
<td>466</td>
<td>423</td>
<td>382</td>
<td>341</td>
</tr>
</tbody>
</table>

Figure 2. Hub Locations for Model 1 (constant marginal cost across quartiles)
Figure 3. Hub Location for Model 2

Figure 4. Hub Location for Model 3
Figure 5. Hub Location for Model 4

Figure 6. Hub Locations for Model 5
With the scale effect, hubs handling a larger quantity of products enjoy lower marginal handling costs. The merging of smaller hubs into larger hubs leads to handling cost savings. As shown in Figure 7, compared with Model 1, the total quantity handled in Quartiles 1-3 hubs decreases for models with scale effect (Models 2-4) while the total quantity handled in Quartile 4 hubs increases. Among models with scale effect, the total quantity handled in Quartiles 1-2 hubs decreases with the magnitude of the marginal cost margin and meanwhile the total quantities handled in Quartiles 4 increase with the marginal cost margin. The change in quantity handled in Quartile 3 hubs remains ambiguous when the marginal cost margin increases.

It is not surprising that the average quantity handled in each quartile continuously decreases as the marginal cost margin widens from Model 2 to Model 5 (Figure 8). In this study, we set minimum and maximum capacity constraints for each quartile. As the marginal cost margin between quartiles increases, the incentives to establish more hubs with larger capacity become stronger. To obtain the full benefit of economies of scale, distribution of products among hubs becomes strategic in order to reduce the handling costs. Figures 9-12 show the quantity handled at each individual hub in each quartile across models (in ascending order). As Figures 10-12 show, the number of hubs meeting the minimum threshold to enter Quartiles 2-4 increases with the marginal cost margin, so that the average quantity handled in Quartiles 2-4 hubs approach the minimum threshold. Although the total quantity handled in Quartile 4 hubs increases from Model 1 to Model 5, the total quantity handled in these hubs increases at a lower rate than the increase in the number of hubs in the same model. As a result, the average quantity handled in these hubs drops when the marginal handling cost margin increases.
Figure 7. Total Quantity Handled at Each Quartile across Models

Figure 8. Average Quantity Handled at Each Quartile across Models
Figure 9. Quantity Handled at Quartile 4 Hubs across Models

Figure 10. Quantity Handled at Quartile 2 Hubs across Models
The marginal cost between quartiles provides incentives for transporting products longer in order to build upper quartile hubs which take advantage of the scale effect. As shown in Table 3, the transportation costs increase with the marginal cost margin between quartiles. There is a tradeoff between increased transportation costs and handling costs saved as a result of the scale effect. Our model is designed to determine the optimal balance.
Table 3. Relative Costs across Models

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup & Maintenance</td>
<td>61,640,000</td>
<td>60,560,000</td>
<td>58,800,000</td>
<td>57,320,000</td>
<td>54,320,000</td>
</tr>
<tr>
<td>Handling</td>
<td>3,352,872,669</td>
<td>3,170,241,005</td>
<td>2,977,265,100</td>
<td>2,778,258,552</td>
<td>2,575,089,791</td>
</tr>
<tr>
<td>Transportation</td>
<td>1,304,479,869</td>
<td>1,362,150,630</td>
<td>1,376,292,042</td>
<td>1,390,511,166</td>
<td>1,406,489,067</td>
</tr>
<tr>
<td>Total ($)</td>
<td>4,718,992,538</td>
<td>4,592,951,635</td>
<td>4,412,357,142</td>
<td>4,226,089,718</td>
<td>4,035,898,858</td>
</tr>
</tbody>
</table>

The optimal solutions of models 1 to 5 are sensitive to the change in marginal handling costs for hub quartiles. If the marginal cost margin between quartiles changes, a new solution is required to meet a new optimum. Table 4 demonstrates how the optimal solution improves the cost efficiency of each model. Cells in the 5×5 matrix in the table indicate the total costs generated in a situation in which the optimal solutions for models listed in the column are applied to models listed in the row. The total cost resulting from each unique optimal solution for each specific model is shown in the main diagonal of the matrix. Obviously, an optimal solution for a model cannot be optimal for the other, even if it was generated in a condition similar to the other.

Table 4. Comparative Cost Analysis Matrix

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>4,718,992,538</td>
<td>4,745,033,273</td>
<td>4,750,011,971</td>
<td>4,755,296,163</td>
<td>4,759,973,184</td>
</tr>
<tr>
<td>Model 2</td>
<td>4,598,081,814</td>
<td>4,592,951,635</td>
<td>4,594,837,265</td>
<td>4,597,910,926</td>
<td>4,600,877,197</td>
</tr>
<tr>
<td>Model 3</td>
<td>4,417,565,009</td>
<td>4,413,654,914</td>
<td>4,412,357,142</td>
<td>4,413,149,438</td>
<td>4,414,348,006</td>
</tr>
<tr>
<td>Model 4</td>
<td>4,254,388,043</td>
<td>4,232,197,550</td>
<td>4,227,634,836</td>
<td>4,226,089,718</td>
<td>4,226,454,245</td>
</tr>
<tr>
<td>Model 5</td>
<td>4,091,286,418</td>
<td>4,050,254,615</td>
<td>4,042,325,734</td>
<td>4,038,373,727</td>
<td>4,035,898,858</td>
</tr>
</tbody>
</table>

Model Comparison and Validation

To confirm effectiveness of solutions generated by models, this section compares the simulated assembly hub locations with their counterparts in the real food system. We select the county level produce processing facilities as a representative, with the understanding that they are not identical to assembly hubs. Similar to assembly hubs, however, these processing facilities may choose locations exactly in or close to production centers (nodes) in order to reduce product
transportation time and costs; from there, processed products are transported to distribution centers or delivered directly to consumers. Due to their common characteristics and similar functionalities, assembly hubs and processing facilities are comparable in terms their locations. To facilitate comparison, we collected data of U.S. fresh produce processing facility locations (2007 Census of Agriculture). These are a total of 1,005 processing facilities representing frozen fruit, juice and vegetable manufacturing, fruit and vegetable canning, dehydrating food, perishable prepared fresh produce manufacturing and fruit and vegetable drinks manufacturing. The locations and scales of these facilities are shown in Figure 13.

![Figure 13. Fresh Produce Processing Facility Locations across U.S. Counties](image)

Overall we conclude that the simulated results (Figures 2-6) are good representations of the real system, when focusing on the location pattern of processing facility and assembly hubs. To identify the consistency of the two types of locations, we calculate the number of assembly hubs that overlap processing facility locations in counties for each of the five models and calculate the ratio of the number of overlaps to the number of hubs. The ratio represents the probability that a hub location overlaps a processing facility. Results are listed in Table 5,
Table 5: Overlapping County Locations

<table>
<thead>
<tr>
<th></th>
<th>Overlaps</th>
<th>Hubs</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>417</td>
<td>563</td>
<td>0.74</td>
</tr>
<tr>
<td>Model 2</td>
<td>404</td>
<td>466</td>
<td>0.87</td>
</tr>
<tr>
<td>Model 3</td>
<td>369</td>
<td>423</td>
<td>0.88</td>
</tr>
<tr>
<td>Model 4</td>
<td>342</td>
<td>382</td>
<td>0.91</td>
</tr>
<tr>
<td>Model 5</td>
<td>324</td>
<td>341</td>
<td>0.95</td>
</tr>
</tbody>
</table>

While there is a significant decrease in hub numbers from models 1-5, the number of overlapping locations only slightly decreases. As a result, the overlap ratio increases from model 1 to model 5. Especially the ratio increases with a large margin from model 1 to model 2. There is a higher ratio of location overlaps for models with scale effect than the model with no scale effect. The models with scale effects better approximate the real system.

It is not surprising that our solutions do not perfectly duplicate and actual processing locations. Based on the nature of the simulation, the divergence between them stems from the following factors:

1. Our models are solved under certain assumptions about operational uncertainties, e.g., given requirement and constraints for hub operations, scale effects and transportation cost. This study does not duplicate the environments which the real systems faced when they emerged.

2. Our models are solved allowing for only economics incentives, but the real systems may emerge under incentives beyond economic ones, such as social or political incentives. The implemented optimization algorithms in this model do not address these possible social or political characteristics inherent in real systems.

3. Our solutions are optimal but the real system may not be. Agriculture is undergoing extreme change. The economic and operational environments keep evolving across time. The agricultural supply chain system is actually vulnerable to the environment evolution.
Allowing for this, currently the real system may no longer be optimal, even if it once was.

For the third reason, our model solutions may provide useful information to make improvements in the overall efficiency of the logistics of the network.

Conclusions

Facility location is a well-established research area within operations research. The application of hub location models has long been under discussion in regional and local food system studies due to their presumed potential contribution to the sustainability of food supply chains. This study provides a replicable empirical framework to conduct impact and cost assessments for regional and local food systems. Overall the simulated results reflect the real system well.

We explore the idea of endogenous hub location on the fresh produce value chain. To overcome limitations in the literature, we integrate an economy of scale effect into our models. By collecting detailed expenditure and sales information from county statistics in the U.S., we identify the pattern of scale effect inherent in hub operations and apply a cost of operation function that rewards economies of scale on quantities handled in different hierarchy quartiles. The hub optimization problem was mathematically formulated as a mixed integer linear programming model with an objective to minimize the total costs associated with produce assembly and hub operations. We designed several experiments to assess the scale effect of economies in the network and visualized the results. Our results provide strong evidence that scale effects have a significant impact on hub location solutions. Under different marginal cost assumptions, produce transportation is re-routed to take advantage of cost saving, and thus the structure of the network is reshaped. When the marginal handling cost margin increases between a different hierarchy of hubs, more hubs with large capacity emerge while the number of small capacity hubs diminishes.

Given the current policy environment, the research is timely and can provide valuable insights into assessing the role and potential impacts of new regional food hub infrastructure investments, as well as the costs and potential market outcomes of such investments. Such information is
currently lacking and is needed to help inform decisions of the various stakeholders interested in regional food hub infrastructure investment.

Our model has several limitations that suggest topics for future investigation. Addressing scale effect of economies by explicitly considering it as a cost in the objective function yields a more realistic modeling approach. But specification of a suitable cost function allowing for scale effects is not easy. In this study, empirical estimates of fixed and per unit marginal handling costs for each capacity choice are informed by regression analysis of data based on a limited number of observations and are based on a rough, initial classification. To fully advance the modeling of these types of economic issues, more investigation is needed to better understand the pattern of scale effect of economies and its influence on hub operation costs.

Our model only accounts for the early portion of the fresh produce supply chain, i.e., from the point of origin to the point of assembly. Points of distribution and points of consumption are not taken into consideration in the model. In this sense, the model abstracts from the actual U.S. fresh produce value chain system and the complexity within it is reduced when compared to reality. Incorporating all these components in a model helps to generate hub location solutions that better mirror the actual set of decisions within the supply chain systems. Furthermore, based on the nature of this study, the extension of seasonal production data to monthly production data facilitates identifying the dynamics of the cycle of operating costs and helps generate solutions more compatible with actual situation of fresh produce supply chain systems. Overcoming these limitations can allow models to even more realistically simulate actual hub locations. We will explore this in future research.

References

Oak Ridge National Laboratory, Center for Transportation Analysis website http://cta.ornl.gov/transnet/SkimTree.htm

