Economic Viability and Agro-ecology of Integrating Beef Cattle and Short Term Perennial Grasses into Peanut and Cotton Rotations

Nicolas DiLorenzo

February 22, 2013

United States Department of Agriculture

National Institute of Food and Agriculture
Overall objective

To evaluate the ecological, environmental and socioeconomic impacts of integrating beef cattle and perennial grass into a multi-crop production system using conservation technology and other best management practices in the Southeast USA with emphasis on small- to medium-sized farms.
North Florida Research and Education Center

Wiregrass Research and Extension Center

N
PEANUT

BAHIA 2

PEANUT

BAHIA 1

COTTON

COTTON

N

Peanut/cotton rotation

Cage (Un-grazed Plots); Grazed Plots

North Florida Research and Education Center

Wiregrass Research and Extension Center

N

Cage (Un-grazed Plots); Grazed Plots

North Florida Research and Education Center

Wiregrass Research and Extension Center

N

Cage (Un-grazed Plots); Grazed Plots
1) Demonstrate that the integration of beef cattle (cow-calf system) into a sod-based peanut and cotton rotation cropping system (SBR) is an economically viable and environmentally sound alternative to a SBR system in which the perennial grass is harvested and sold as hay only.
Objective 1 outcomes

Economic analysis of SBR system: 13 ha of cotton, 13 ha of peanuts, and 64 brood cows

<table>
<thead>
<tr>
<th>Return over Variable Costs</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>$16,347.69</td>
</tr>
<tr>
<td>Peanuts</td>
<td>$16,687.12</td>
</tr>
<tr>
<td>Cattle</td>
<td>$11,170.40</td>
</tr>
<tr>
<td>Total Return over Variable Costs</td>
<td>$44,205.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual Fixed Costs</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery and equipment</td>
<td>$9,447.53</td>
</tr>
<tr>
<td>Cow/calf</td>
<td>$14,710.49</td>
</tr>
<tr>
<td>Irrigation</td>
<td>$13,510.00</td>
</tr>
<tr>
<td>Total Annual Fixed Costs</td>
<td>$37,668.02</td>
</tr>
</tbody>
</table>

Returns Over Total Costs (Net Farm Income) $6,537.20
Specific objectives

2) Identify and quantify the impacts of cattle grazing and traffic in a SBR system on subsequent crop growth, yield and quality, and on soil compaction, C level, nutrient (N and P) utilization and cycling, and greenhouse gas emissions (N_2O, CO_2, CH_4).
Objective 2 outcomes

Seasonal CO₂ Flux

- CO₂ Flux (kg CO₂-C ha⁻¹ d⁻¹)
- Winter, Spring, Summer, Fall
- Bahia1, Bahia2, Cotton, Peanut

CO₂ Flux_Grazing

- CO₂ Flux (kg CO₂-C ha⁻¹ d⁻¹)
- Grazed, Nongrazed

N₂O Flux_Grazing

- N₂O Flux (g N₂O-N ha⁻¹ d⁻¹)
- Grazed, Nongrazed
Objective 2 outcomes

- Cattle CH$_4$ emissions measured using the SF$_6$ tracer technique
- Data will be integrated with soil gas flux to conduct a GHG emissions balance in the SBR system.
Specific objectives

3) Identify producers’ concerns, constraints and obstacles to adopting a SBR system via face-to-face interviews with members of key advisory committees, participant observation at associated outreach activities, and interviews and on-farm observations with two producers who have newly established SBR systems with cattle. Results will be used to modify the SBR approach.

<table>
<thead>
<tr>
<th>Activity</th>
<th># of Unique Events</th>
<th># of Unique Sessions</th>
<th># of Subjects Included</th>
<th>Hours of Recording</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant Observation at Workshops & Field Days</td>
<td>4</td>
<td>18</td>
<td>~200-250</td>
<td>10+</td>
<td>Complete</td>
</tr>
<tr>
<td>Interviews with Producers with Some Form of a Sod Rotation (Not as endorsed)</td>
<td>---</td>
<td>9</td>
<td>7</td>
<td>4.5+</td>
<td>Ongoing (5-10 more subjects)</td>
</tr>
<tr>
<td>Interviews with Sod-Based Rotation with Cattle Personnel</td>
<td>---</td>
<td>28</td>
<td>28</td>
<td>14+</td>
<td>Complete</td>
</tr>
</tbody>
</table>
4) Develop a profit/loss business model using actual economic data collected from our small- to medium-size farm-scale demonstration sites integrating beef cattle into a SBR cropping system.

http://nfrec.ifas.ufl.edu/
Overall outcomes

Grad students / postdocs
• Dr. M. Ruiz Moreno
• Dr. G. Anguelov
• Dr. S. George
• M. Quintero (PhD student)
• J. Huntrods (MS student)
• C. Prevatt (MS student)
• Audrey Gamble (MS student)
• A. Cook (MS student)
• R. Prevatt, III (MS student)

Publications
• 2 In Press peer reviewed papers
• 7 Conference proceedings abstracts
• 3 Extension publications
• 4 Popular press articles
• 11 Presentations

Field days (attendance)
• 6/21/12 – SBR Field Day, Marianna, FL (68)
• 4/5/12 – Cattle Field Day, Headland, AL (60)
• 10/28/11 - Beef/Forage Field Days, Marianna, FL (103)
• 8/23/12 - Young Cattlemen Field Day (20)
Questions